MyHDL @EDAPlayground
Trying out MyHDL became a little easier recently. MyHDL is now avaialbe @EDAPlayground. One can experiment with Python/MyHDL verification of HDL modules and implementing complex digital cirucits in MyHDL.
The @EDAPlayground has two main panels. On the left is the testbench and the right the HDL description to be tested.
There are a couple examples...
BGA and QFP at Home 1 - A Practical Guide.
It is almost universally accepted by the hobbyists that you can't work with high-density packages at home. That is entirely incorrect. I've been assembling and reflowing BGA circuit boards at home for a few years now. BGAs and 0.5mm-pitch QFPs are well within the realm of a determined amateur.
This series of articles presents practical information on designing and assembling boards with high-density packages at home. While the focus is on FPGA packages, most of...
Windows XP and Win32 - the Platform of the Future!
Over the past decade I often wondered why anyone uses Windows. It's just so... proprietary. And pedestrian. As I grew up my OS of choice went nothing to CPM to DOS (on Apple ][), GEM on Atari ST, MS-DOS, DOS extenders, Mac OS, Windows NT, Windows XP, Linux... Now, I again find myself a fan of Windows XP, the platform of the future. (I am still a fan of bare metal, of course).Maybe I am not totally serious, but I, a self-proclaimed freedom lover and...
Introducing the VPCIe framework
IntroductionMy daily work involves platforms featuring an embedded CPU communcating with a FPGA device over a PCI Express link (PCIe for short). The main purpose of this link is for the CPU to convey configuration, control, and status commands to hardware slaves implemented in the FPGA. For data intensive applications (2D XRay detector readout backend), this link can also be used as a DMA channel to transfer data from the FPGA to the CPU memory. Finally, a slave can interrupt the CPU using...
binary hello world
Python + Ohio + MyHDL + FPGARecently I had the opportunity to coordinate a hands-on programmable hardware (FPGA) workshop (open-space) at a regional Python conference - @pyohio. The workshop was for those that had little to no exposure to programmable hardware. For this situation I used two basic examples: two versions of a binary hello world.
The binary hello world -- blinking an LED -- is a good starting point to introduce programmable hardware, hardware descriptions languages,...
Tool install for examples
Most of my examples on fpgarelated use MyHDL for the hardware description and another Python package myhdl_tools rhea.build to control the FPGA vendor's software. This means everything is controlled and run from the Python environment.
Install the following to compile the posted examples:
MyHDL package : pip myhdl or myhdl github myhdl_tools : myhdl_tools bitbucket rhea...Shared-multiplier polyphase FIR filter
Keywords: FPGA, interpolating decimating FIR filter, sample rate conversion, shared multiplexed pipelined multiplier
Discussion, working code (parametrized Verilog) and Matlab reference design for a FIR polyphase resampler with arbitrary interpolation and decimation ratio, mapped to one multiplier and RAM.
IntroductionA polyphase filter can be as straightforward as multirate DSP ever gets, if it doesn't turn into a semi-deterministic, three-legged little dance between input, output and...
PC and SP for a small CPU
Ok, let's make a small stack-based CPU.
I will start where the rubber meets the road - the PC/stack subsystem that I like referring to as the 'legs'. As usual, I will present a design with a twist.
Not having a large design team, deadlines and million-dollar fab runs when designing CPUs creates a truly different environment. I can actually sit at the kitchen table and doodle around with CPU designs to my heart's content. I can try really ridiculous approaches, and work without a...
What do Ohio, Python, and FPGAs have in common?
Anyone in the Columbus Ohio area in the United States this upcoming weekend (7/27 and 7/28) should stop by the @pyohio conference. This is a *FREE* regional python conference. I will be giving a talk at the end of the day Sunday, discussing MyHDL, FPGAs, and a hands-on workshop following the presentation.
The talk will focus on introducing programmable hardware to "imperative thinkers". Anyone curious about FPGAs, Python, or familiar with FPGAs or embedded...
How FPGAs work, and why you'll buy one
Today, pretty much everyone has a CPU, a DSP and a GPU, buried somewhere in their PC, phone, car, etc. Most don't know or care that they bought any of these, but they did.
Will everyone, at some future point, also buy an FPGA? The market size of FPGAs today is about 1% of the annual global semiconductor sales (~$3B vs ~$300B). Will FPGA eventually...
Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.
This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.
- Part 6: Self-Calibration, Measurements and Signalling (this part)
- Part 5:
Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples
Developing and Validating Simulation ModelsThis article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.
- Part 1: Introduction
- Part 2: Ideal Model Examples
- Part 3: Sampled Data Aspects
- Part 4: Engineering of Evaluation Hardware
- Part 5:
Elliptic Curve Cryptography
Secure online communications require encryption. One standard is AES (Advanced Encryption Standard) from NIST. But for this to work, both sides need the same key for encryption and decryption. This is called Private Key encryption.
New Discussion Group: DSP & FPGA
I have just created a new discussion group for engineers implementing DSP functions on FPGAs. The creation of this group has been on my todo list for a long time. If you want to join the group, send a blank email to: fpgadsp-subscribe@yahoogroups.com
As usual, it should take a few weeks before there are enough members for interesting discussions to get started.
Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with application examples will be maintained on the project website.- Part 1: Introduction
- Part 2:...
Sensors Expo - Trip Report & My Best Video Yet!
This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.
Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip. If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...
Feedback Controllers - Making Hardware with Firmware. Part 9. Closing the low-latency loop
It's time to put together the DSP and feedback control sciences, the evaluation electronics, the Intel Cyclone floating-point FPGA algorithms and the built-in control loop test-bed and evaluate some example designs. We will be counting the nanoseconds and looking for textbook performance in the creation of emulated hardware circuits. Along the way, there is a printed circuit board (PCB) issue to solve using DSP.
Fig 1. The evaluation platform
Additional design...
Tools of the Trade: reading PDFs (and keeping bookmarks)
In this article I will take a look at the wonderful MuPDF viewer and present a small modification that saves bookmarks alongside the pdf files, making it infinitely more useful.
Some days I sit down to work and wonder how anything ever gets done. A simple example. When I work on an FPGA design, I wind up with 3 or 4 screens full of documentation, generally in PDF format. There are the Xilinx manuals, the various tool manuals, language reference manuals, you name it. While...
Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples
Developing and Validating Simulation ModelsThis article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.
- Part 1: Introduction
- Part 2: Ideal Model Examples
- Part 3: Sampled Data Aspects
- Part 4: Engineering of Evaluation Hardware
- Part 5:
Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with application examples will be maintained on the project website.- Part 1: Introduction
- Part 2:...
Project introduction: Digital Filter Blocks in MyHDL and their integration in pyFDA
Hi everyone! After a lot of hesitation and several failed attempts, I have finally entered the world of blogging. A little about myself : My name is Sriyash Caculo and I’m a third year undergrad student at BITS Pilani K.K. Birla Goa Campus pursuing a major in Electronics and Instrumentation engineering. Being an electronics engineer, I developed an interest in Digital Signal Processing and its implementation on hardware.
This blog-post is the first of many to come for the...
Helping New Bloggers to Break the Ice: A New Ipad Pro for the Author with the Best Article!
Breaking the ice can be tough. Over the years, many individuals have asked to be given access to the blogging interface only to never post an article.
Why I would choose an FPGA development board?
Some years ago, when I went to the University, I bought some development boards based on different microcontrollers, and I remember that, although development boards were not expensive, I had to add to the price of the board, the shipping costs and the taxes, which were more than the 50% of the price of the board, but there are no option if I wanted to test that microcontroller. When I wanted to test some other feature, I had to buy a different board, for example, if I wanted to design some...
Feedback Controllers - Making Hardware with Firmware. Part 5. Some FPGA Aspects.
This part of the on-going series of articles looks at a variety of aspects concerning the FPGA device which provides the high-speed maths capability for the low-latency controller and the arbitrary circuit generator application. In due course a complete specification along with application examples will be maintained on the project website here.- Part 5: Some FPGA Aspects (this part)
- Part 4: Engineering of...
Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects
Some Design and Simulation Considerations for Sampled-Data ControllersThis article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.
- Part 1: Introduction
MyHDL synthesis: from browser to FPGA in five seconds
When it comes to feeding (mostly proprietary) synthesis tools, the most widely supported HDL (hardware design language) is probably plain Verilog, then comes VHDL. The reasons for that are simply based on popularity or the fact that VHDL is a little more complex to parse.
So, all super-HDLs (like Chisel, SpinalHDL, etc.) transfer to one of these V* HDLs in one way or another, then synthesis/mapping/place'n'route turns it into a wiring map for the silicon. Same went for MyHDL or its also...