Cutting a Path Forward
IntroductionAs a newcomer to the community, I thought I would start off by introducing myself, and give a little information about what has drawn me to start working with FPGAs.
My day job is as a professional software developer: Figure out what people want; figure out how to make it happen (if possible); and then wrangle code, databases, networks, and servers into giving the correct responses or actions as necessary.
By night, however, I've been working on my...
How precise is my measurement?
Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.
An accurate, precise...Embedded World 2018 - More Videos!
After the interview videos last week, this week I am very happy to release two more videos taken at Embedded World 2018 and that I am proud of.
For both videos, I made extensive use of my two new toys, a Zhiyun Crane Gimbal and a Sony a6300 camera.
The use of a gimbal like the Zhiyun makes a big difference in terms of making the footage look much more stable and cinematographic.
As for the Sony camera, it takes fantastic slow-motion footage and...
Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...Embedded World 2018 - The Interviews
Once again this year, I had the chance to go to Embedded World in Nuremberg Germany. And once again this year, I brought my video equipment to try and capture some of the most interesting things at the show.
Something new this year, I asked Jacob Beningo if he would partner with me in doing interviews with a few vendors. I would operate the camera while Jacob would ask the right questions to the vendors to make them talk about the key products/features that...
Feedback Controllers - Making Hardware with Firmware. Part 7. Turbo-charged DSP Oscillators
This article will look at some DSP Sine-wave oscillators and will show how an FPGA with limited floating-point performance due to latency, can be persuaded to produce much higher sample-rate sine-waves of high quality.Comparisons will be made between implementations on Intel Cyclone V and Cyclone 10 GX FPGAs. An Intel numerically controlled oscillator
Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.
This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.
- Part 6: Self-Calibration, Measurements and Signalling (this part)
- Part 5:
Feedback Controllers - Making Hardware with Firmware. Part 5. Some FPGA Aspects.
This part of the on-going series of articles looks at a variety of aspects concerning the FPGA device which provides the high-speed maths capability for the low-latency controller and the arbitrary circuit generator application. In due course a complete specification along with application examples will be maintained on the project website here.- Part 5: Some FPGA Aspects (this part)
- Part 4: Engineering of...
Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with application examples will be maintained on the project website.- Part 1: Introduction
- Part 2:...
Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects
Some Design and Simulation Considerations for Sampled-Data ControllersThis article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.
- Part 1: Introduction
Homebrew CPUs: Messing around with a J1
In this article I will examine James Bowman's excellent J1 CPU; I will then proceed to mess around with various parts of it, making it smaller, more appropriate to my particular application, and possibly faster. I hope this will show you how easy it is to fiddle around with homemade CPUs and encourage you to make something weird and wonderful.
J1 CPUMy hat is off to James Bowman. J1 is pretty cool. It is a stack machine; it executes instructions in one cycle, it is...
MyHDL FPGA Tutorial I (LED Strobe)
Last updated 05-Nov-2015
IntroductionFrom many perspectives the latest FPGA offerings from 'X' and 'A' are large devices - mucho programmable logic resources. Even the devices that one can get for sub \$10 are relatively large. Because of the size of these FPGAs they are implemented using an HDL. To manually configure each circuit would be a long and tedious task. It is not feasible to program an FPGA by manually defining the logic for each LUT and manually...
Went 280km/h (174mph) in a Porsche Panamera in Germany!
Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.
I don’t often convert VHDL to Verilog but when I do ...
VHDL to VerilogI don’t often convert VHDL to Verilog but when I do it is not the most exciting task in the world (that is an understatement). For the most part I am HDL agnostic. Well that is not true, I have a strong preference for MyHDL, and an insubstantial preference for VHDL over Verilog. The choice of HDL for a project is often complicated, irrational, sometimes rational, but most often random. It is often not a choice of the developer - for...
VHDL tutorial - combining clocked and sequential logic
In an earlier article on VHDL programming ("VHDL tutorial" and "VHDL tutorial - part 2 - Testbench", I described a design for providing a programmable clock divider for a ADC sequencer. In this example, I showed how to generate a clock signal (ADCClk), that was to be programmable over a series of fixed rates (20MHz, 10MHz, 4MHz, 2MHz, 1MHz and 400KHz), given a master clock rate of 40MHz. A reader of that article had written to ask if it was possible to extend the design to...
Part 11. Using -ve Latency DSP to Cancel Unwanted Delays in Sampled-Data Filters/Controllers
This final article in the series will look at -ve latency DSP and how it can be used to cancel the unwanted delays in sampled-data systems due to such factors as Nyquist filtering, ADC acquisition, DSP/FPGA algorithm computation time, DAC reconstruction and circuit propagation delays.Some applications demand zero-latency or zero unwanted latency signal processing. Negative latency DSP may sound like the stuff of science fiction or broken physics but the arrangement as...
Recruiting New Bloggers!
Previous calls for bloggers have been very successful in recruiting some great communicators - Rick Lyons, Jason Sachs, Victor Yurkovsky, Mike Silva, Markus Nentwig, Gene Breniman, Stephen Friederichs,
Shared-multiplier polyphase FIR filter
Keywords: FPGA, interpolating decimating FIR filter, sample rate conversion, shared multiplexed pipelined multiplier
Discussion, working code (parametrized Verilog) and Matlab reference design for a FIR polyphase resampler with arbitrary interpolation and decimation ratio, mapped to one multiplier and RAM.
IntroductionA polyphase filter can be as straightforward as multirate DSP ever gets, if it doesn't turn into a semi-deterministic, three-legged little dance between input, output and...
Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...Fit Sixteen (or more) Asynchronous Serial Receivers into the Area of a Standard UART Receiver
IntroductionThis article will describe a technique, available in many current FPGA architectures, to fit a large amount of logic into a small area. About ten years ago now (Feb/Mar 2005), I helped develop a multi-line Caller ID product. The Multi-Channel Asynchronous Receiver (MCAR) FPGA core developed for that product will be used to illustrate the technique(s) needed to fit a 16 channel MCAR into a single Spartan II XC2S30-5VQ100 FPGA.
To stay true to the original design, I...
Spread the Word and Run a Chance to Win a Bundle of Goodies from Embedded World
Do you have a Twitter and/or Linkedin account?
If you do, please consider paying close attention for the next few days to the EmbeddedRelated Twitter account and to my personal Linkedin account (feel free to connect). This is where I will be posting lots of updates about how the EmbeddedRelated.tv live streaming experience is going at Embedded World.
The most successful this live broadcasting experience will be, the better the chances that I will be able to do it...
Homebrew CPUs: Messing around with a J1
In this article I will examine James Bowman's excellent J1 CPU; I will then proceed to mess around with various parts of it, making it smaller, more appropriate to my particular application, and possibly faster. I hope this will show you how easy it is to fiddle around with homemade CPUs and encourage you to make something weird and wonderful.
J1 CPUMy hat is off to James Bowman. J1 is pretty cool. It is a stack machine; it executes instructions in one cycle, it is...
StrangeCPU #3. Instruction Slides - The Strangest CPU Yet!
Summary:Decoding instructions with a Sliding Window system. 0-Bit Sliding Register Windows.
Table of Contents:- Part 1: A new CPU - technology review, re-examination of the premises; StrangeCPU concepts; x86 notes.
- Part 2: Sliding-Window Token Machines, an in-depth exploration of this curious technology; ARM notes.
- Part 3. Instruction Slides - The Strangest CPU Yet! Decoding instructions with a Sliding...
Shared-multiplier polyphase FIR filter
Keywords: FPGA, interpolating decimating FIR filter, sample rate conversion, shared multiplexed pipelined multiplier
Discussion, working code (parametrized Verilog) and Matlab reference design for a FIR polyphase resampler with arbitrary interpolation and decimation ratio, mapped to one multiplier and RAM.
IntroductionA polyphase filter can be as straightforward as multirate DSP ever gets, if it doesn't turn into a semi-deterministic, three-legged little dance between input, output and...
PC and SP for a small CPU
Ok, let's make a small stack-based CPU.
I will start where the rubber meets the road - the PC/stack subsystem that I like referring to as the 'legs'. As usual, I will present a design with a twist.
Not having a large design team, deadlines and million-dollar fab runs when designing CPUs creates a truly different environment. I can actually sit at the kitchen table and doodle around with CPU designs to my heart's content. I can try really ridiculous approaches, and work without a...
Verilog vs VHDL
Introduction
Verilog and VHDL are two industry standard Hardware Description Languages (HDL) that are used in writing programs for electronic integrated circuits (ICs) i.e., ASIC and FPGA. Many system designers face this issue: which HDL language to choose – Verilog or VHDL. The answer is by no means easy or trivial. Both of these languages are widely compared and contrasted without any clearly defined victor. Both of them have their own merits and demerits and have different...
Recruiting New Bloggers!
Previous calls for bloggers have been very successful in recruiting some great communicators - Rick Lyons, Jason Sachs, Victor Yurkovsky, Mike Silva, Markus Nentwig, Gene Breniman, Stephen Friederichs,
A New Related Site!
We are delighted to announce the launch of the very first new Related site in 15 years! The new site will be dedicated to the trendy and quickly growing field of Machine Learning and will be called - drum roll please - MLRelated.com.
We think MLRelated fits perfectly well within the “Related” family, with:
- the fast growth of TinyML, which is a topic of great interest to the EmbeddedRelated community
- the use of Machine/Deep Learning in Signal Processing applications, which is of...
Little to no benefit from C based HLS
Last updated 07-Nov-2015
As I write this I am on a plane and my destination is EELive 2014 where I am going to give a talk hardware design: the grunge era. It is a shotgun introduction to three alternative hardware description languages (alt.hdl). The three languages briefly introduced in the talk are: bsv, chisel, and myhdl. The goal of the talk is simply to raise awareness of the three...
Spline interpolation
A cookbook recipe for segmented y=f(x) 3rd-order polynomial interpolation based on arbitrary input data. Includes Octave/Matlab design script and Verilog implementation example. Keywords: Spline, interpolation, function modeling, fixed point approximation, data fitting, Matlab, RTL, Verilog
IntroductionSplines describe a smooth function with a small number of parameters. They are well-known for example from vector drawing programs, or to define a "natural" movement path through given...
New Design - Finally!
For those of you who are familiar with my work, you already know that FPGARelated.com is not the only engineering web site that I publish. I also publish DSPRelated.com and EmbeddedRelated.com. Those two web sites have been on a new design for quite some time now and porting the new design to FPGARelated.com has been on my todo list for too long! I am glad today to announce that I have finally found the time to apply the more modern design to FPGARelated.com.
Thank you...
New Discussion Group: DSP & FPGA
I have just created a new discussion group for engineers implementing DSP functions on FPGAs. The creation of this group has been on my todo list for a long time. If you want to join the group, send a blank email to: fpgadsp-subscribe@yahoogroups.com
As usual, it should take a few weeks before there are enough members for interesting discussions to get started.